## ONE/1 Stellar Data

STEP ONE: Determine what type the primary star of the system is. Generate a spectral class on Table 1.1.1. If you already know what class the star is, skip to STEP TWO. Note that the charts also generate brown dwarves.

STEP TWO: Determine if the star is a binary star by rolling 1d10. On a roll of 7+ the star is a binary. Roll again, every roll of 7+ on 1d10 resulting in another star added. Generate spectral class of additional stars normally after consulting Table 1.1.2. If you already know what the secondary stars (if any) are, skip to STEP THREE.

STEP THREE: Determine the basic luminosity and mass of all stars involved by consulting Table 1.1.3.

Table 1.1.1 Star Generation

 1d100 Basic Type Size Code Specification Roll 1 Giant III 1d10: 1=F, 2=G, 3-7=K, 8+=K Subgiant (IV) 2 Spectral Class A V 1d10: 7+ = Subgiant (IV) 3-5 Spectral Class F V 1d10: 9+ = Subgiant (IV) 6-13 Spectral Class G V 1d10: 10 = Subgiant (IV) 14-27 Spectral Class K V 28-76 Spectral Class M V 77-86 White Dwarf VII 87-99 Brown Dwarf - 100 Special - Could be B-class stars, giants, neutron stars, protostars or other rare stellar objects

Specify spectral class by rolling 1d10 and put the number between the spectral class and size code. A roll of "10" is treated as "0". Brown dwarves and white dwarves do not have proper spectral classifications, but they do have their own section that should be consulted.

Exception: K- IV class subgiants are always of class K0 IV.

Table 1.1.2 Binary Stars

 1d10 1-2: Second star is of identical spectral type and size class, though possibly of another higher numeric specification. Roll 1d10 - if lower than the original star, use the original star's number, otherwise use the rolled number. 3+: Second star is of random type, determined by a roll on Table 1.1.1. However, treat the Giant result and any result that would give a second star of a higher type than the original star as a Brown Dwarf result.

Table 1.1.3 Basic Luminosity & Mass

Note: All numbers are in solar equivalents except temperature (which is in Kelvin). L=Luminosity, M=Mass, T=Temperature, R=Radius. Certain stars presented here are rare stars and can only be generated with a roll of 100 on table 1.1.1. Size VI ("Subdwarves") are not covered in these rules.

Size Ia ("Supergiant Stars")
0 1 2 3 4 5 6 7 8 9
O L=4,000,000
M=80
T=44,000
R=35
L=3,250,000
M=75
T=42,000
R=34
L=2,800,000
M=70
T=40,000
R=35
L=2,000,000
M=66
T=38,000
R=33
L=1,600,000
M=60
T=36,000
R=33
L=1,350,000
M=56
T=34,500
R=33
L=900,000
M=50
T=32,000
R=31
L=800,000
M=47
T=29,500
R=35
L=700,000
M=45
T=27,000
R=39
L=640,000
M=42
T=25,000
R=43
B L=560,000
M=40
T=22,000
R=52
L=511,000
M=37
T=20,000
R=60
L=463,000
M=35
T=18,500
R=67
L=310,000
M=32
T=16,400
R=70
L=251,000
M=30
T=15,200
R=73
L=204,000
M=27
T=14,200
R=75
L=184,000
M=25
T=13,200
R=83
L=165,000
M=23
T=12,200
R=92
L=146,000
M=21
T=11,200
R=102
L=126,000
M=19
T=10,200
R=115
A L=107,000
M=18
T=9,000
R=136
L=101,000
M=17
T=8,800
R=138
L=96,000
M=16
T=8,600
R=141
L=91,000
M=16
T=8,400
R=144
L=86,000
M=15
T=8,200
R=147
L=81,000
M=15
T=8,000
R=150
L=77,000
M=14
T=7,800
R=153
L=73,000
M=14
T=7,600
R=157
L=69,000
M=14
T=7,400
R=161
L=65,000
M=13
T=7,120
R=168
F L=61,000
M=13
T=6,900
R=175
L=59,000
M=13
T=6,750
R=179
L=57,000
M=12
T=6,600
R=184
L=55,000
M=12
T=6,450
R=190
L=52,000
M=12
T=6,300
R=195
L=51,000
M=12
T=6,100
R=204
L=51,000
M=12
T=5,950
R=215
L=55,000
M=12
T=5,800
R=235
L=59,000
M=12
T=5,650
R=256
L=63,000
M=12
T=5,550
R=280
G L=67,000
M=12
T=5,400
R=300
L=71,000
M=12
T=5,250
R=325
L=75,000
M=13
T=5,100
R=350
L=79,000
M=13
T=4,950
R=390
L=84,000
M=13
T=4,800
R=420
L=89,000
M=13
T=4,700
R=450
L=91,000
M=14
T=4,550
R=490
L=93,000
M=14
T=4,400
R=530
L=95,000
M=14
T=4,250
R=570
L=96,000
M=14
T=4,100
R=620
K L=97,000
M=14
T=4,000
R=650
L=99,000
M=15
T=3,850
R=720
L=101,000
M=15
T=3,700
R=780
L=103,000
M=16
T=3,550
R=860
L=105,000
M=17
T=3,400
R=940
L=107,000
M=18
T=3,300
R=1,000
L=109,000
M=18
T=3,200
R=1,080
L=111,000
M=19
T=3,100
R=1,160
L=113,000
M=19
T=3,000
R=1,250
L=115,000
M=20
T=2,900
R=1,350
M L=117,000
M=20
T=2,800
R=1,450
L=119,000
M=21
T=2,650
R=1,650
L=121,000
M=22
T=2,500
R=1,850
L=123,000
M=23
T=2,350
R=2,100
L=126,000
M=24
T=2,200
R=2,500
L=129,000
M=25
T=2,000
R=3,000
L=132,000
M=26
T=1,975
R=3,100
L=135,000
M=27
T=1,950
R=3,250
L=138,000
M=28
T=1,925
R=3,400
L=141,000
M=30
T=1,900
R=3,500

 Unlike main sequence stars, which tend to be rather similar within a spectral classification, other stars vary significantly in size, luminosity and radius. To 'randomise' supergiants roll 1d10 and multiply mass and luminosity by the values given. Recalculate radius as ... R = L0.5 x (5800 / T)2 1d10 Mass mult Lum mult 1 0.3 0.3 2 0.4 0.4 3 0.5 0.5 4 0.6 0.6 5 0.7 0.7 6 0.8 0.8 7 0.9 0.9 8 1.0 1.0 9 1.25 1.5 10 1.5 2.0

Size Ib ("Supergiant Stars")
0 1 2 3 4 5 6 7 8 9
O L=3,750,000
M=80
T=45,000
R=32
L=2,700,000
M=75
T=43,000
R=30
L=2,200,000
M=70
T=41,000
R=30
L=1,700,000
M=66
T=39,000
R=29
L=1,450,000
M=60
T=37,000
R=30
L=1,200,000
M=56
T=35,500
R=29
L=750,000
M=50
T=33,000
R=27
L=475,000
M=45
T=30,500
R=25
L=350,000
M=40
T=28,000
R=25
L=320,000
M=37
T=26,000
R=28
B L=270,000
M=35
T=24,000
R=30
L=185,000
M=32
T=21,000
R=33
L=130,000
M=30
T=19,500
R=32
L=97,000
M=27
T=18,200
R=32
L=61,000
M=25
T=15,800
R=33
L=47,000
M=23
T=14,300
R=36
L=38,500
M=21
T=13,300
R=37
L=31,000
M=19
T=12,300
R=39
L=24,000
M=18
T=11,300
R=41
L=19,000
M=17
T=10,300
R=44
A L=15,000
M=16
T=9,100
R=50
L=14,400
M=15
T=8,900
R=51
L=13,800
M=14.5
T=8,700
R=52
L=13,200
M=14
T=8,500
R=53
L=12,500
M=13.5
T=8,300
R=55
L=11,700
M=13
T=8,100
R=55
L=10,800
M=12.8
T=7,850
R=57
L=9,950
M=12.6
T=7,600
R=58
L=9,100
M=12.4
T=7,450
R=58
L=8,250
M=12.2
T=7,200
R=59
F L=7,400
M=12.0
T=7,000
R=59
L=6,800
M=11.6
T=6,900
R=58
L=6,200
M=11.2
T=6,750
R=58
L=5,600
M=10.8
T=6,600
R=58
L=5,000
M=10.4
T=6,450
R=57
L=5,100
M=10
T=6,300
R=61
L=5,300
M=10
T=6,150
R=65
L=5,500
M=10
T=6,000
R=69
L=5,700
M=10
T=5,850
R=74
L=5,900
M=10
T=5,700
R=80
G L=6,100
M=10.0
T=5,600
R=84
L=6,500
M=10.4
T=5,450
R=91
L=6,900
M=10.8
T=5,300
R=99
L=7,300
M=11.2
T=5,150
R=108
L=7,700
M=11.6
T=5,000
R=118
L=8,100
M=12.0
T=4,850
R=129
L=8,800
M=12.2
T=4,700
R=143
L=9,500
M=12.4
T=4,550
R=158
L=10,200
M=12.6
T=4,400
R=175
L=10,900
M=12.8
T=4,250
R=195
K L=11,700
M=13.0
T=4,100
R=215
L=13,500
M=13.5
T=4,000
R=245
L=15,100
M=14.0
T=3,900
R=270
L=16,900
M=14.5
T=3,800
R=300
L=18,900
M=15.0
T=3,650
R=350
L=20,400
M=16
T=3,500
R=390
L=25,300
M=16
T=3,400
R=460
L=30,200
M=16
T=3,300
R=540
L=35,000
M=16
T=3,200
R=615
L=40,500
M=16
T=3,050
R=730
M L=46,000
M=16
T=2,900
R=860
L=53,000
M=17
T=2,800
R=990
L=61,000
M=18
T=2,650
R=1,200
L=71,000
M=19
T=2,500
R=1,400
L=80,000
M=20
T=2,350
R=1,700
L=89,000
M=21
T=2,200
R=2,100
L=95,000
M=22
T=2,150
R=2,250
L=101,000
M=23
T=2,100
R=2,400
L=108,000
M=24
T=2,050
R=2,600
L=115,000
M=25
T=2,000
R=2,850

 Unlike main sequence stars, which tend to be rather similar within a spectral classification, other stars vary significantly in size, luminosity and radius. To 'randomise' supergiants roll 1d10 and multiply mass and luminosity by the values given. Recalculate radius as ... R = L0.5 x (5800 / T)2 1d10 Mass mult Lum mult 1 0.3 0.3 2 0.4 0.4 3 0.5 0.5 4 0.6 0.6 5 0.7 0.7 6 0.8 0.8 7 0.9 0.9 8 1.0 1.0 9 1.25 1.5 10 1.5 2.0

Size II ("Bright Giant Stars")
0 1 2 3 4 5 6 7 8 9
O L=3,500,000
M=80
T=46,000
R=30
L=2,600,000
M=75
T=44,000
R=28
L=2,000,000
M=70
T=42,000
R=27
L=1,550,000
M=66
T=40,000
R=26
L=1,200,000
M=60
T=38,000
R=26
L=900,000
M=56
T=36,500
R=24
L=650,000
M=50
T=34,000
R=23
L=430,000
M=45
T=31,500
R=22
L=320,000
M=40
T=29,000
R=23
L=230,000
M=35
T=27,000
R=22
B L=170,000
M=30
T=25,000
R=22
L=130,000
M=27
T=22,000
R=25
L=95,000
M=25
T=20,000
R=26
L=60,000
M=23
T=18,800
R=23
L=32,000
M=21
T=16,100
R=23
L=18,600
M=19
T=14,400
R=22
L=13,500
M=18
T=13,400
R=22
L=9,400
M=17
T=13,200
R=21
L=6,800
M=16
T=11,400
R=21
L=4,000
M=15
T=10,400
R=20
A L=2,200
M=14
T=9,300
R=18
L=1,900
M=13
T=9,100
R=25
L=1,650
M=12.5
T=8,900
R=26
L=1,400
M=12.0
T=8,700
R=23
L=1,150
M=11.5
T=8,450
R=23
L=850
M=11.0
T=8,200
R=22
L=800
M=10.8
T=7,850
R=22
L=750
M=10.6
T=7,750
R=21
L=700
M=10.4
T=7,550
R=21
L=650
M=10.2
T=7,300
R=20
F L=600
M=10.0
T=7,100
R=16
L=575
M=9.5
T=7,000
R=16
L=550
M=9.0
T=6,850
R=17
L=525
M=8.5
T=6,700
R=17
L=500
M=8.0
T=6,550
R=18
L=510
M=8.1
T=6,400
R=19
L=520
M=8.3
T=6,250
R=20
L=530
M=8.5
T=6,100
R=21
L=540
M=8.7
T=5,950
R=22
L=550
M=8.9
T=5,800
R=23
G L=560
M=9.1
T=5,700
R=25
L=590
M=9.3
T=5,650
R=26
L=620
M=9.5
T=5,600
R=27
L=660
M=9.7
T=5,550
R=28
L=700
M=9.9
T=5,500
R=29
L=740
M=10.1
T=5,400
R=31
L=770
M=10.3
T=5,200
R=35
L=800
M=10.5
T=4,950
R=39
L=830
M=10.7
T=4,700
R=44
L=860
M=10.9
T=4,500
R=49
K L=900
M=11
T=4,300
R=55
L=1,200
M=11.5
T=4,150
R=68
L=1,500
M=12
T=4,000
R=81
L=1,800
M=13
T=3,850
R=96
L=2,100
M=14
T=3,750
R=111
L=2,450
M=14
T=3,650
R=125
L=2,800
M=14
T=3,550
R=141
L=3,200
M=14
T=3,450
R=160
L=3,600
M=14
T=3,350
R=180
L=4,100
M=14
T=3,250
R=205
M L=4,600
M=14
T=3,100
R=240
L=7,400
M=14
T=2,900
R=350
L=10,100
M=14.5
T=2,750
R=450
L=12,000
M=15.0
T=2,600
R=545
L=14,500
M=15.5
T=2,500
R=650
L=14,900
M=16.0
T=2,400
R=710
L=15,200
M=16.5
T=2,300
R=780
L=15,500
M=17.0
T=2,200
R=865
L=15,800
M=17.5
T=2,150
R=915
L=16,200
M=18.0
T=2,100
R=970

 Unlike main sequence stars, which tend to be rather similar within a spectral classification, other stars vary significantly in size, luminosity and radius. To 'randomise' bright giants roll 1d10 and multiply mass and luminosity by the values given. Recalculate radius as ... R = L0.5 x (5800 / T)2 1d10 Mass mult Lum mult 1 0.3 0.3 2 0.4 0.4 3 0.5 0.5 4 0.6 0.6 5 0.7 0.7 6 0.8 0.8 7 0.9 0.9 8 1.0 1.0 9 1.25 1.5 10 1.5 2.0

Size III ("Giant Stars")
0 1 2 3 4 5 6 7 8 9
O L=3,000,000
M=80
T=47,000
R=26.4
L=1,800,000
M=70
T=45,000
R=22.3
L=1,400,000
M=65
T=43,000
R=21.5
L=1,050,000
M=60
T=41,000
R=20.5
L=800,000
M=55
T=39,000
R=19.8
L=600,000
M=50
T=37,500
R=18.5
L=400,000
M=45
T=35,000
R=17.4
L=300,000
M=40
T=32,500
R=17.4
L=200,000
M=35
T=30,000
R=16.7
L=125,000
M=30
T=28,000
R=15.2
B L=100,000
M=25
T=26,000
R=15.7
L=55,000
M=23
T=23,000
R=14.9
L=30,000
M=21
T=21,000
R=13.2
L=18,000
M=19
T=19,200
R=12.2
L=10,000
M=17
T=16,400
R=12.5
L=6,500
M=15
T=14,600
R=12.7
L=3,700
M=14
T=13,600
R=11.1
L=1,900
M=13.5
T=12,600
R=9.2
L=800
M=13.0
T=11,600
R=7.1
L=360
M=12.5
T=10,600
R=5.7
A L=280
M=12.0
T=9,500
R=6.2
L=240
M=11.5
T=9,250
R=6.1
L=200
M=11.0
T=9,000
R=5.9
L=170
M=10.5
T=8,750
R=5.7
L=140
M=10.0
T=8,500
R=5.6
L=120
M=9.6
T=8,250
R=5.5
L=100
M=9.2
T=8,000
R=5.3
L=87
M=8.9
T=7,750
R=5.2
L=74
M=8.6
T=7,500
R=5.1
L=63
M=8.3
T=7,350
R=4.9
F L=53
M=8.0
T=7,200
R=4.7
L=51
M=7.0
T=7,050
R=4.8
L=49
M=6.0
T=6,900
R=4.9
L=47
M=5.2
T=6,750
R=5.1
L=46
M=4.7
T=6,600
R=5.2
L=45
M=4.3
T=6,450
R=5.4
L=46
M=3.9
T=6,300
R=5.7
L=47
M=3.5
T=6,150
R=6.1
L=48
M=3.1
T=6,000
R=6.5
L=49
M=2.8
T=5,900
R=6.8
G L=50
M=2.5
T=5,800
R=7.1
L=55
M=2.4
T=5,700
R=7.7
L=60
M=2.5
T=5,600
R=8.3
L=65
M=2.5
T=5,500
R=9.0
L=70
M=2.6
T=5,400
R=9.7
L=77
M=2.7
T=5,250
R=10.7
L=85
M=2.7
T=5,100
R=11.9
L=92
M=2.8
T=4,950
R=13.2
L=101
M=2.8
T=4,800
R=14.7
L=110
M=2.9
T=4,650
R=16.3
K L=120
M=3.0
T=4,500
R=18.2
L=140
M=3.3
T=4,400
R=20.4
L=160
M=3.6
T=4,300
R=22.8
L=180
M=3.9
T=4,200
R=25.6
L=210
M=4.2
T=4,100
R=28.8
L=240
M=4.5
T=4,000
R=32.4
L=270
M=4.8
T=3,900
R=36.5
L=310
M=5.1
T=3,800
R=41.2
L=360
M=5.4
T=3,700
R=46.5
L=410
M=5.8
T=3,550
R=54.0
M L=470
M=6.2
T=3,400
R=63
L=600
M=6.4
T=3,200
R=80
L=900
M=6.6
T=3,100
R=105
L=1,300
M=6.8
T=3,000
R=135
L=1,800
M=7.2
T=2,800
R=180
L=2,300
M=7.4
T=2,650
R=230
L=2,400
M=7.8
T=2,500
R=260
L=2,500
M=8.3
T=2,400
R=290
L=2,600
M=8.8
T=2,300
R=325
L=2,700
M=9.3
T=2,200
R=360

 Unlike main sequence stars, which tend to be rather similar within a spectral classification, other stars vary significantly in size, luminosity and radius. To 'randomise' giants roll 1d10 and multiply mass and luminosity by the values given. Recalculate radius as ... R = L0.5 x (5800 / T)2 1d10 Mass mult Lum mult 1 0.3 0.3 2 0.4 0.4 3 0.5 0.5 4 0.6 0.6 5 0.7 0.7 6 0.8 0.8 7 0.9 0.9 8 1.0 1.0 9 1.25 1.5 10 1.5 2.0

Size IV ("Subgiant Stars")
0 1 2 3 4 5 6 7 8 9
O L=2,500,000
M=80
T=48,000
R=23.1
L=1,500,000
M=70
T=46,000
R=19.5
L=900,000
M=60
T=44,000
R=16.5
L=600,000
M=55
T=42,000
R=14.8
L=500,000
M=50
T=40,000
R=14.9
L=340,000
M=45
T=38,500
R=13.3
L=250,000
M=40
T=36,000
R=13.0
L=160,000
M=35
T=33,500
R=12.0
L=110,000
M=30
T=31,000
R=11.6
L=80,000
M=25
T=29,000
R=11.3
B L=60,000
M=20
T=27,000
R=11.3
L=30,000
M=18
T=24,000
R=10.1
L=15,000
M=16
T=21,500
R=8.9
L=8,000
M=14
T=19,600
R=7.8
L=4,000
M=12
T=16,700
R=7.6
L=2,000
M=10
T=14,800
R=6.9
L=1,500
M=9.4
T=13,800
R=6.8
L=1,000
M=8.6
T=12,800
R=6.5
L=500
M=7.8
T=11,800
R=5.4
L=250
M=7.0
T=10,800
R=4.6
A L=156
M=6.0
T=9,700
R=4.5
L=127
M=5.1
T=9,450
R=4.2
L=102
M=4.6
T=9,200
R=4.0
L=83
M=4.3
T=8,950
R=3.8
L=67
M=4.0
T=8,700
R=3.6
L=54
M=3.7
T=8,450
R=3.5
L=44
M=3.4
T=8,200
R=3.3
L=36
M=3.1
T=7,950
R=3.2
L=29
M=2.9
T=7,700
R=3.1
L=23
M=2.7
T=7,500
R=2.9
F L=19.0
M=2.5
T=7,300
R=2.7
L=16.9
M=2.4
T=7,200
R=2.7
L=15.1
M=2.3
T=7,100
R=2.6
L=13.4
M=2.2
T=6,950
R=2.6
L=12.0
M=2.1
T=6,800
R=2.5
L=10.7
M=2.0
T=6,650
R=2.5
L=9.5
M=1.95
T=6,500
R=2.5
L=8.5
M=1.90
T=6,350
R=2.5
L=7.6
M=1.85
T=6,200
R=2.4
L=6.7
M=1.80
T=6,050
R=2.4
G L=6
M=1.75
T=5,900
R=2.4
L=5.8
M=1.70
T=5,750
R=2.4
L=5.6
M=1.65
T=5,600
R=2.5
L=5.4
M=0.60
T=5,450
R=2.6
L=5.2
M=0.55
T=5,300
R=2.7
L=5.0
M=0.50
T=5,200
R=2.8
L=4.8
M=0.48
T=5,100
R=2.8
L=4.6
M=0.46
T=5,000
R=2.9
L=4.4
M=0.44
T=4,900
R=2.9
L=4.2
M=0.42
T=4,800
R=3.0
K L=4
M=1.4
T=4,700
R=3.0
- - - - - - - - -
M - - - - - - - - - -

 Unlike main sequence stars, which tend to be rather similar within a spectral classification, other stars vary significantly in size, luminosity and radius. To 'randomise' subgiants roll 1d10 and multiple mass and luminosity by the values given. Recalculate radius as ... R = L0.5 x (5800 / T)2 1d10 Mass mult Lum mult 1 0.6 0.2 2 0.7 0.4 3 0.8 0.6 4 0.9 0.8 5-6 1.0 1.0 7 1.1 1.2 8 1.2 1.4 9 1.3 1.6 10 1.4 1.8

Size V ("Main Sequence Stars")
0 1 2 3 4 5 6 7 8 9
O L=2,000,000
M=80
T=50,000
R=19
L=1,200,000
M=70
T=48,000
R=16
L=700,000
M=60
T=46,000
R=13.3
L=400,000
M=50
T=44,000
R=11.0
L=285,000
M=45
T=42,000
R=10.2
L=200,000
M=40
T=40,000
R=9.4
L=125,000
M=35
T=37,500
R=8.7
L=75,000
M=30
T=35,000
R=8.0
L=40,000
M=25
T=32,500
R=6.6
L=20,000
M=20
T=30,000
R=5.3
B L=13,000
M=17.5
T=28,000
R=4.9
L=7,800
M=15.1
T=25,000
R=4.8
L=4,700
M=13.0
T=22,000
R=4.8
L=2,800
M=11.1
T=19,000
R=4.8
L=1,700
M=9.5
T=17,000
R=4.8
L=1,000
M=8.2
T=15,000
R=4.7
L=600
M=7.0
T=14,000
R=4.2
L=370
M=6.0
T=13,000
R=3.8
L=220
M=5.0
T=12,000
R=3.5
L=130
M=4.0
T=11,000
R=3.2
A L=80
M=3.0
T=10,000
R=3.0
L=62
M=2.8
T=9,750
R=2.8
L=48
M=2.6
T=9,500
R=2.6
L=38
M=2.5
T=9,250
R=2.4
L=29
M=2.3
T=9,000
R=2.2
L=23
M=2.2
T=8,750
R=2.1
L=18
M=2.0
T=8,500
R=2.0
L=14
M=1.9
T=8,250
R=1.8
L=11
M=1.8
T=8,000
R=1.7
L=8.2
M=1.7
T=7,750
R=1.6
F L=6.4
M=1.6
T=7,500
R=1.5
L=5.5
M=1.53
T=7,350
R=1.5
L=4.7
M=1.47
T=7,200
R=1.4
L=4.0
M=1.42
T=7,050
R=1.4
L=3.4
M=1.36
T=6,900
R=1.3
L=2.9
M=1.31
T=6,750
R=1.3
L=2.5
M=1.26
T=6,600
R=1.2
L=2.16
M=1.21
T=6,450
R=1.2
L=1.85
M=1.17
T=6,300
R=1.2
L=1.58
M=1.12
T=6,150
R=1.1
G L=1.36
M=1.08
T=6,000
R=1.1
L=1.21
M=1.05
T=5,900
R=1.1
L=1.09
M=1.02
T=5,800
R=1.0
L=0.98
M=0.99
T=5,700
R=1.0
L=0.88
M=0.96
T=5,600
R=1.0
L=0.79
M=0.94
T=5,500
R=1.0
L=0.71
M=0.92
T=5,400
R=1.0
L=0.64
M=0.89
T=5,300
R=1.0
L=0.57
M=0.87
T=5,200
R=0.9
L=0.51
M=0.85
T=5,100
R=0.9
K L=0.46
M=0.82
T=5,000
R=0.9
L=0.39
M=0.79
T=4,850
R=0.9
L=0.32
M=0.75
T=4,700
R=0.9
L=0.27
M=0.72
T=4,550
R=0.8
L=0.23
M=0.69
T=4,400
R=0.8
L=0.19
M=0.66
T=4,250
R=0.8
L=0.16
M=0.63
T=4,100
R=0.8
L=0.14
M=0.61
T=3,950
R=0.8
L=0.11
M=0.56
T=3,800
R=0.8
L=0.10
M=0.49
T=3,650
R=0.8
M L=0.08
M=0.46
T=3,500
R=0.8
L=0.04
M=0.38
T=3,350
R=0.6
L=0.02
M=0.32
T=3,200
R=0.5
L=0.012
M=0.26
T=3,050
R=0.4
L=0.006
M=0.21
T=2,900
R=0.3
L=0.003
M=0.18
T=2,750
R=0.25
L=0.0017
M=0.15
T=2,600
R=0.2
L=0.0009
M=0.12
T=2,450
R=0.17
L=0.0005
M=0.10
T=2,300
R=0.14
L=0.0002
M=0.08
T=2,200
R=0.11

Size VII ("White Dwarves")
 1d10 Mass Radius 1 1.3 0.004 2 1.1 0.007 3 0.9 0.009 4 0.7 0.010 5 0.6 0.011 6 0.55 0.012 7 0.50 0.013 8 0.45 0.014 9 0.40 0.015 10 0.35 0.016
 1d10 Temperature 1 30,000 2 25,000 3 20,000 4 16,000 5 14,000 6 12,000 7 10,000 8 8,000 9 6,000 10 4,000
To determine the luminosity of a white dwarf use:

L = R2 x T4 / 58004

(there is a modifier to the temperature roll which comes from the star's age ... as determined in section ONE/2)

Brown Dwarves
 1d10 Mass Radius 1 0.070 0.07 2 0.064 0.08 3 0.058 0.09 4 0.052 0.10 5 0.046 0.11 6 0.040 0.12 7 0.034 0.12 8 0.026 0.12 9 0.020 0.12 10 0.014 0.12
 1d10 Temperature 1 2,200 2 2,000 3 1,800 4 1,600 5 1,400 6 1,200 7 1,000 8 900 9 800 10 700
To determine the luminosity of a brown dwarf use:

L = R2 x T4 / 58004

(there is a modifier to the temperature roll which comes from the star's age ... as determined in section ONE/2)

 SPECTRAL CLASS: A star's spectral class depends on the temperature, and thus basically upon its mass. More massive stars are hotter. But more massive stars are also less common. Spectral classes are subdivided into numeric distinctions from 0 to 9, where a star with 0 is hotter than one with 9. O: These very massive blue stars are also very rare. One of the closest to Earth is Mintaka in the belt of Orion, almost 1000 LY away. B: Blue-white massive stars. B-stars are also uncommon. One of the closest to Earth is Alpha Gruis, slightly more than 100 LY away. A: White stars. Sirius, Vega and Altair are of this type. F: Yellow-white stars slightly larger than the Sun. Usually considered the most massive stars capable of harboring Earth-like life. G: Yellow stars. Our sun is class G2, while Alpha Centauri is G0. K: Orange stars. They are less massive and cooler than the Sun. Epsilon Eridani is a typical example. M: Small red stars often called red dwarves. They are very common and faint. Proxima Centauri and Barnard's Star are typical. Some very cool red stars are "L"-class, and these could well be brown dwarves or their close relatives. SPECIAL STELLAR TYPES White Dwarves: These are very dense, hot and small (in size, not mass) stars which are formed from old stars. White dwarves are common - about 10% of all stars. A young white dwarf is very hot but it gradually cools off, so the surface temperature indicates age of the dwarf, not primarily mass. Interestingly enough, the more massive a white dwarf is the smaller it also is. Very young white dwarves are among the hottest stars known, but that phase is fairly short. White dwarves don't have habitable planets, but it is possible that distant cold worlds could survive the stellar evolution. The closest white dwarf to the sun is Sirius B. Brown Dwarves: "Stars" which are too small to ignite stellar fusion in earnest. They range in size from 0.013 to 0.08 solar masses. They have a brief period of deuterium burning, but after that generate energy by gravitational contraction. Brown dwarves are cooler than real stars and they, like white dwarves, cool off with time. Young brown dwarves are substantially brighter and hotter than the older ones found. Unlike planets, brown dwarves can be formed separately, like stars. (Sometimes "brown dwarf" is used for all objects larger than 1.5 Jupiter masses and below 80 Jupiter masses, but here the term is limited to the bigger objects that can form independently). Brown dwarves radiate infrared heat much more than visible light. In radius, brown dwarves are probably smaller than Jupiter, or about as large - despite being more than ten times more massive. This may seem strange, but the gravitation of a brown dwarf is enough to compress it to much greater densities. (And small red stars are much denser than the Sun - or the Earth for that matter). Few brown dwarves have been found, but they are believed to be common though hard to detect. Wolf-Rayet Stars: These are O-class stars which seem to have a gas envelope. Such envelopes are also sometimes found around B-stars and is probably ejected from the star. Coal Stars: Spectral classes R, N and S are uncommon very cool stars. C-stars (carbon stars): Of spectral types R & N, these stars seem to be rich in carbon and carbon compounds. Many are found in the Magellanic clouds, where they are more common than in our galaxy. C-stars roughly conform to G4-M9 spectral classes in terms of size. S-stars: These are usually very cool red giant stars with an abundance of zirconium oxide and lantanum oxide. Peculiar A-stars: These A-class stars have very strong absorbtion lines of metals. Flare Stars: These are M-class stars (ranges M3 to M9) which periodically increase in luminosity by 1d10 x 50% for a short time. About half (1-5 on 1d10) of all dim red stars may be flare stars. The increase is due to large solar flares being considerably hotter than the star, and thus richer in visible, UV and X-ray radiation. Flare stars may provide problems for life on close planets to cope with the increased radiation. Flare stars near us include Proxima Centauri, UV Ceti B, Wolf 359 and Ross 154, all closer than 10 LY. Protostars: These are stars in the process of initial contraction towards the main sequence. Protostars are brighter but also cooler than the star they eventually will become as they generate heat by gravitational contraction and not by nuclear fusion, and they have not formed any real planetary systems. Contraction goes much faster for a massive star than for a red dwarf, which will take hundreds of millions of years to contract. A young (
 HERTZSPRUNG-RUSSELL DIAGRAM: The Hertzsprung-Russell diagram is a way of showing the relation between spectral class (and thus temperature) and luminosity.